Asymptotic Stabilization of Euler-poincaré Mechanical Systems

نویسندگان

  • Anthony M. Bloch
  • Dong Eui Chang
  • Naomi E. Leonard
  • Jerrold E. Marsden
  • Craig Woolsey
چکیده

Stabilization of mechanical control systems by the method of controlled Lagrangians and matching is used to analyze asymptotic stabilization of systems whose underlying dynamics are governed by the Euler-Poincaré equations. In particular, we analyze asymptotic stabilization of a satellite. Copyright c © 2000 IFAC

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Stabilization of the Heavy Top Using Controlled Lagrangians

In this paper we extend the previous work on the asymptotic stabilization of pure Euler-Poincaré mechanical systems using controlled Lagrangians to the study of asymptotic stabilization of Euler-Poincaré mechanical systems such as the heavy top.

متن کامل

Euler - Poincaré reduction of externally forced rigid body motion

If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action. Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group,...

متن کامل

Dissipation and Controlled Euler-Poincaré Systems

The method of controlled Lagrangians is a technique for stabilizing underactuated mechanical systems which involves modifying a system’s energy and dynamic structure through feedback. These modifications can obscure the effect of physical dissipation in the closed-loop. For example, generic damping can destabilize an equilibrium which is closed-loop stable for a conservative system model. In th...

متن کامل

Feedback Stabilization of Relative Equilibria for Mechanical Systems with Symmetry

This paper is an outgrowth of the work of Bloch, Krishnaprasad, Marsden and Sánchez de Alvarez [1992], where a feedback control that stabilizes intermediate axis rigid body rotation using an internal rotor was found. Stabilization is determined by use of the energy-Casimir (Arnold) method. In the present paper we show that this feedback controlled system can be written as the Euler-Lagrange equ...

متن کامل

Stabilization of sampled-data nonlinear systems via backstepping on their Euler approximate model

Two integrator backstepping designs are presented for digitally controlled continuous-time plants in special form. The controller designs are based on the Euler approximate discrete-time model of the plant and the obtained control algorithms are novel. The two control laws yield, respectively, semiglobal-practical stabilization and global asymptotic stabilization of the Euler model. Both design...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001